Initial commit
This commit is contained in:
commit
94c22ea362
107
new_notes/Calculus_Lecture_6.typ
Normal file
107
new_notes/Calculus_Lecture_6.typ
Normal file
|
|
@ -0,0 +1,107 @@
|
|||
#import "./template/template.typ": exercise, example, notes, theorem, definition, proof, lemma
|
||||
|
||||
#show: notes.with(
|
||||
class: "EE1M1",
|
||||
lecture: "Integrations by parts and partial decomposition fractions",
|
||||
number: 6,
|
||||
date: "2025-11-21",
|
||||
)
|
||||
|
||||
== Integrations by parts
|
||||
|
||||
#theorem(title: "unbounded integral")[
|
||||
Suppose $f$ and $g$ are differentiable functions. Then
|
||||
$ integral f(x) g^(')(x) = f(x)g(x) - integral f^(')(x) g(x) d x $
|
||||
Using $g^(')(x) d x = d v$ and $f^(')(x) d x = d u$ we can also write:
|
||||
$ integral u d v = u v - integral v d u $
|
||||
]
|
||||
|
||||
#theorem(title: "bounded integral")[
|
||||
Suppose $f$ and $g$ are differentiable functions. Then
|
||||
$ integral_a^b f(x) g^(')(x) d x = [f(x)g(x)]_a^b - integral_a^b f^(')(x)g(x) d x $
|
||||
]
|
||||
|
||||
#example[
|
||||
Can the integral be solved using both the substitution role and integration
|
||||
by parts?
|
||||
$ integral 1/x ln(x) d x $
|
||||
|
||||
#emph("Substitution rule")
|
||||
|
||||
#emph("Integration by parts")
|
||||
]
|
||||
|
||||
#example[
|
||||
$
|
||||
integral e^(sin(x)) sin(x) cos(x) d x \
|
||||
u = sin(x) \
|
||||
d u = cos(x) d x \
|
||||
integral e^u u d u \
|
||||
k^(') (x) = e^u \
|
||||
h(x) = u \
|
||||
integral e^u u d u = k(u)h(u) - integral k(u)h^(')(u) d u \
|
||||
integral e^u u d u = e^u u - e^u = e^(sin(x)) sin(x) - e^(sin(x)) + C
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
$
|
||||
integral e^(2 x) cos(x) d x = \
|
||||
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
$
|
||||
integral arctan(x) d x = \
|
||||
g^(')(x) = 1, g(x) = x \
|
||||
|
||||
$
|
||||
]
|
||||
|
||||
#exercise[
|
||||
$ integral ln(3x) d x $
|
||||
]
|
||||
|
||||
#exercise[
|
||||
$ integral_0^(-pi) e^(-x) sin(x) d x $
|
||||
]
|
||||
|
||||
#exercise[
|
||||
$ integral ln(x) / x sin(ln(x)) d x $
|
||||
]
|
||||
|
||||
== Partial decomposition fractions
|
||||
|
||||
#theorem(title: "partial decomposition fractions")[
|
||||
Let $f(x) = P(x)/Q(x)$, with $P(x)$ and $Q(x)$ polynomials.
|
||||
|
||||
The *degree* of a polynomial is its highest power.
|
||||
|
||||
Suppose $"degree"(P(x)) < "degree"(Q(x))$.
|
||||
|
||||
*Distinct linear factors* If $Q(x) = (x-a)(x-b)$ with $a eq.not b$ then
|
||||
|
||||
$ P(x) / Q(x) = A / (x-a) + B / (x-b) $
|
||||
|
||||
*Irreducible quadratic factor* If $Q(x) = (x-a)(x^2 + b x + c)$ with $b^2 - 4c < 0$.
|
||||
Then:
|
||||
|
||||
$ P(x)/Q(x) = A/(x-a) + (B x + C)/(x^2 + b x + c) $
|
||||
|
||||
*Repeated linear factor* If $Q(x) = (x-a)^2 (x-b)$ with $a eq.not b$ then
|
||||
|
||||
$ P(x)/Q(x) = A/ (x-a) + B /(x-a)^2 + C/(x-b) $
|
||||
]
|
||||
|
||||
$
|
||||
(x-a)(x-a)^2(x-b) = (x-a)^3(x-b) \
|
||||
(A(x-a)^2 + B(x-a))(x-b) + C(x-a)^3
|
||||
$
|
||||
|
||||
$ A / (x-1) + B / (x+1) = A (x+1) + B(x-1) = 1 \
|
||||
B = -1/2 \
|
||||
A = 1/2
|
||||
$
|
||||
|
||||
$ 1 / ((x-1)(x^2 - 2x + 3)) = $
|
||||
60
new_notes/template/template.typ
Normal file
60
new_notes/template/template.typ
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
#import "@preview/chic-hdr:0.5.0": *
|
||||
#import "@preview/theorion:0.4.1": *
|
||||
#import cosmos.fancy: *
|
||||
|
||||
#let notes(
|
||||
class : "",
|
||||
lecture: "",
|
||||
number: none,
|
||||
date: none,
|
||||
body
|
||||
) = {
|
||||
|
||||
show: chic.with(
|
||||
chic-footer(
|
||||
left-side: date,
|
||||
right-side: chic-page-number()
|
||||
),
|
||||
chic-header(
|
||||
left-side: class,
|
||||
right-side: [Lecture #number : #lecture]),
|
||||
chic-separator(1pt)
|
||||
)
|
||||
|
||||
show heading: set text(fill: black)
|
||||
show heading.where(level: 1): set heading(numbering: none)
|
||||
set heading(numbering: (first, ..nums) => numbering("1", ..nums))
|
||||
show heading.where(level: 2): set align(center)
|
||||
show heading.where(level: 2): set text(size: 18pt, font: "New Computer Modern")
|
||||
|
||||
show heading: it => {
|
||||
if it.level == 2 {
|
||||
block[
|
||||
#smallcaps[Chapter. ]
|
||||
#counter(heading).display(it.numbering)
|
||||
#smallcaps[#it.body]
|
||||
]
|
||||
} else {
|
||||
block[#it.body]
|
||||
}
|
||||
}
|
||||
|
||||
show: show-theorion
|
||||
|
||||
set-primary-body-color(red.lighten(80%))
|
||||
set-primary-border-color(red.darken(50%))
|
||||
|
||||
set-secondary-border-color(green.darken(50%))
|
||||
set-secondary-body-color(green.lighten(80%))
|
||||
set-secondary-symbol[#sym.suit.diamond.filled]
|
||||
|
||||
[= Lecture #number: #lecture]
|
||||
|
||||
outline(title: none, target: figure.where(kind: "theorem"))
|
||||
|
||||
outline(title: none, target: figure.where(kind: "definition"))
|
||||
|
||||
line(length: 100%, stroke: 1pt)
|
||||
|
||||
body
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user