commit 94c22ea36232ae19167543732984691907f8d87e Author: Folkert Kevelam Date: Fri Nov 21 15:28:11 2025 +0100 Initial commit diff --git a/new_notes/Calculus_Lecture_6.typ b/new_notes/Calculus_Lecture_6.typ new file mode 100644 index 0000000..9b487b6 --- /dev/null +++ b/new_notes/Calculus_Lecture_6.typ @@ -0,0 +1,107 @@ +#import "./template/template.typ": exercise, example, notes, theorem, definition, proof, lemma + +#show: notes.with( + class: "EE1M1", + lecture: "Integrations by parts and partial decomposition fractions", + number: 6, + date: "2025-11-21", +) + +== Integrations by parts + +#theorem(title: "unbounded integral")[ + Suppose $f$ and $g$ are differentiable functions. Then + $ integral f(x) g^(')(x) = f(x)g(x) - integral f^(')(x) g(x) d x $ + Using $g^(')(x) d x = d v$ and $f^(')(x) d x = d u$ we can also write: + $ integral u d v = u v - integral v d u $ +] + +#theorem(title: "bounded integral")[ + Suppose $f$ and $g$ are differentiable functions. Then + $ integral_a^b f(x) g^(')(x) d x = [f(x)g(x)]_a^b - integral_a^b f^(')(x)g(x) d x $ +] + +#example[ + Can the integral be solved using both the substitution role and integration + by parts? + $ integral 1/x ln(x) d x $ + + #emph("Substitution rule") + + #emph("Integration by parts") +] + +#example[ + $ + integral e^(sin(x)) sin(x) cos(x) d x \ + u = sin(x) \ + d u = cos(x) d x \ + integral e^u u d u \ + k^(') (x) = e^u \ + h(x) = u \ + integral e^u u d u = k(u)h(u) - integral k(u)h^(')(u) d u \ + integral e^u u d u = e^u u - e^u = e^(sin(x)) sin(x) - e^(sin(x)) + C + $ +] + +#example[ + $ + integral e^(2 x) cos(x) d x = \ + + $ +] + +#example[ + $ + integral arctan(x) d x = \ + g^(')(x) = 1, g(x) = x \ + + $ +] + +#exercise[ + $ integral ln(3x) d x $ +] + +#exercise[ + $ integral_0^(-pi) e^(-x) sin(x) d x $ +] + +#exercise[ + $ integral ln(x) / x sin(ln(x)) d x $ +] + +== Partial decomposition fractions + +#theorem(title: "partial decomposition fractions")[ + Let $f(x) = P(x)/Q(x)$, with $P(x)$ and $Q(x)$ polynomials. + + The *degree* of a polynomial is its highest power. + + Suppose $"degree"(P(x)) < "degree"(Q(x))$. + + *Distinct linear factors* If $Q(x) = (x-a)(x-b)$ with $a eq.not b$ then + + $ P(x) / Q(x) = A / (x-a) + B / (x-b) $ + + *Irreducible quadratic factor* If $Q(x) = (x-a)(x^2 + b x + c)$ with $b^2 - 4c < 0$. + Then: + + $ P(x)/Q(x) = A/(x-a) + (B x + C)/(x^2 + b x + c) $ + + *Repeated linear factor* If $Q(x) = (x-a)^2 (x-b)$ with $a eq.not b$ then + + $ P(x)/Q(x) = A/ (x-a) + B /(x-a)^2 + C/(x-b) $ +] + +$ +(x-a)(x-a)^2(x-b) = (x-a)^3(x-b) \ +(A(x-a)^2 + B(x-a))(x-b) + C(x-a)^3 +$ + + $ A / (x-1) + B / (x+1) = A (x+1) + B(x-1) = 1 \ + B = -1/2 \ + A = 1/2 + $ + +$ 1 / ((x-1)(x^2 - 2x + 3)) = $ diff --git a/new_notes/template/template.typ b/new_notes/template/template.typ new file mode 100644 index 0000000..2776825 --- /dev/null +++ b/new_notes/template/template.typ @@ -0,0 +1,60 @@ +#import "@preview/chic-hdr:0.5.0": * +#import "@preview/theorion:0.4.1": * +#import cosmos.fancy: * + +#let notes( + class : "", + lecture: "", + number: none, + date: none, + body +) = { + + show: chic.with( + chic-footer( + left-side: date, + right-side: chic-page-number() + ), + chic-header( + left-side: class, + right-side: [Lecture #number : #lecture]), + chic-separator(1pt) + ) + + show heading: set text(fill: black) + show heading.where(level: 1): set heading(numbering: none) + set heading(numbering: (first, ..nums) => numbering("1", ..nums)) + show heading.where(level: 2): set align(center) + show heading.where(level: 2): set text(size: 18pt, font: "New Computer Modern") + + show heading: it => { + if it.level == 2 { + block[ + #smallcaps[Chapter. ] + #counter(heading).display(it.numbering) + #smallcaps[#it.body] + ] + } else { + block[#it.body] + } + } + + show: show-theorion + + set-primary-body-color(red.lighten(80%)) + set-primary-border-color(red.darken(50%)) + + set-secondary-border-color(green.darken(50%)) + set-secondary-body-color(green.lighten(80%)) + set-secondary-symbol[#sym.suit.diamond.filled] + + [= Lecture #number: #lecture] + + outline(title: none, target: figure.where(kind: "theorem")) + + outline(title: none, target: figure.where(kind: "definition")) + + line(length: 100%, stroke: 1pt) + + body +}